Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.094
Filtrar
1.
Cell Rep ; 43(4): 114064, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578830

RESUMEN

Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteínas de Unión al ADN , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Fosforilación , Proteínas de Unión al ADN/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Proteínas Portadoras/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteína BRCA1/metabolismo , Transducción de Señal , Proteínas Nucleares/metabolismo , Fibroblastos/metabolismo , Puntos de Control del Ciclo Celular
2.
Cancer Lett ; 589: 216820, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574883

RESUMEN

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Asunto(s)
Antineoplásicos , Piperazinas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Resistencia a Antineoplásicos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Gemcitabina , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular Tumoral
3.
Nat Commun ; 15(1): 2853, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565883

RESUMEN

Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Proteína BRCA1/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Glicosilación , Proteína BRCA2/metabolismo , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Antígeno B7-H1/metabolismo
4.
Cell Rep ; 43(4): 114006, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38554279

RESUMEN

Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.


Asunto(s)
Proteína BRCA1 , Reprogramación Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Proteína 1 de Unión al Supresor Tumoral P53 , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Animales , Humanos , Reprogramación Celular/genética , Ratones , Reparación del ADN por Recombinación
5.
DNA Repair (Amst) ; 137: 103668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460389

RESUMEN

Alovudine is a chain-terminating nucleoside analog (CTNA) that is frequently used as an antiviral and anticancer agent. Generally, CTNAs inhibit DNA replication after their incorporation into nascent DNA during DNA synthesis by suppressing subsequent polymerization, which restricts the proliferation of viruses and cancer cells. Alovudine is a thymidine analog used as an antiviral drug. However, the mechanisms underlying the removal of alovudine and DNA damage tolerance pathways involved in cellular resistance to alovudine remain unclear. Here, we explored the DNA damage tolerance pathways responsible for cellular tolerance to alovudine and found that BRCA1-deficient cells exhibited the highest sensitivity to alovudine. Moreover, alovudine interfered with DNA replication in two distinct mechanisms: first: alovudine incorporated at the end of nascent DNA interfered with subsequent DNA synthesis; second: DNA replication stalled on the alovudine-incorporated template strand. Additionally, BRCA1 facilitated the removal of the incorporated alovudine from nascent DNA, and BRCA1-mediated homologous recombination (HR) contributed to the progressive replication on the alovudine-incorporated template. Thus, we have elucidated the previously unappreciated mechanism of alovudine-mediated inhibition of DNA replication and the role of BRCA1 in cellular tolerance to alovudine.


Asunto(s)
Didesoxinucleósidos , Nucleósidos , Nucleósidos/farmacología , Nucleósidos/genética , Nucleósidos/metabolismo , Replicación del ADN , Proteína BRCA1/metabolismo , ADN
6.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542081

RESUMEN

Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)-BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama/metabolismo , Arabia Saudita/epidemiología , Regiones Promotoras Genéticas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Metilación de ADN , Factores de Riesgo , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Predisposición Genética a la Enfermedad , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo
7.
Chem Res Toxicol ; 37(4): 561-570, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534178

RESUMEN

Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama/patología , Proliferación Celular , Línea Celular Tumoral , Proteína BRCA2/genética , Daño del ADN , ADN
8.
Biol Cell ; 116(4): e202300072, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514439

RESUMEN

BACKGROUND INFORMATION: The precise etiology of breast cancer is not completely understood, although women with BRCA1 gene mutations have a significantly increased risk of developing the disease. In addition, sporadic breast cancer is frequently associated with decreased BRCA1 gene expression. Growing evidence of Human papillomaviruses (HPVs) infections in breast tumors has raised the possibility of the involvement of HPVs in the pathogenesis of breast cancer. We investigated whether the effects of HPV oncoproteins E6 and E7 were influenced by the expression levels of BRCA1. HPV16E6E7 (prototype or E6D25E/E7N29S Asian variant type) were stably expressed in MDA-MB231 breast cancer cells, wild type for BRCA1, or with BRCA1 knocked down. RESULTS: Expression of HPV16E6E7 oncogenes did not affect BRCA1 levels and the abundance of HPV16E6E7 was not altered by BRCA1 knockdown. BRCA1 levels did not alter HPV16E6E7-dependent degradation of G1-S cell cycle proteins p53 and pRb. However, we found that the expression of G2-M cell cycle protein cyclin B1 enhanced by HPV16E6E7 was impacted by BRCA1 levels. Especially, we found the correlation between BRCA1 and cyclin B1 expression and this was also confirmed in breast cancer samples from a Thai cohort. We further demonstrated that the combination of HPV oncoproteins and low levels of BRCA1 protein appears to enhance proliferation and invasion. Transactivation activities of HPV16E6E7 on genes regulating cell proliferation and invasion (TGF-ß and vimentin) were significantly increased in BRCA1-deficient cells. CONCLUSIONS: Our results indicate that a deficiency of BRCA1 promotes the transactivation activity of HPV16E6E7 leading to increase of cell proliferation and invasion. SIGNIFICANCE: HPV infection appears to have the potential to enhance the aggressiveness of breast cancers, especially those deficient in BRCA1.


Asunto(s)
Neoplasias de la Mama , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Femenino , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Ciclina B1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Infecciones por Papillomavirus/genética , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo
9.
Cell Death Differ ; 31(4): 497-510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374229

RESUMEN

Poly ADP-ribose polymerase inhibitors (PARPis) exhibit promising efficacy in patients with BRCA mutations or homologous repair deficiency (HRD) in ovarian cancer (OC). However, less than 40% of patients have HRD, it is vital to expand the indications for PARPis in BRCA-proficient patients. Ferroptosis suppressor protein 1 (FSP1) is a key protein in a newly identified ferroptosis-protective mechanism that occurs in parallel with the GPX4-mediated pathway and is associated with chemoresistance in several cancers. Herein, FSP1 is reported to be negatively correlated with the prognosis in OC patients. Combination therapy comprising olaparib and iFSP1 (a FSP1 inhibitor) strongly inhibited tumour proliferation in BRCA-proficient OC cell lines, patient-derived organoids (PDOs) and xenograft mouse models. Surprisingly, the synergistic killing effect could not be reversed by ferroptosis inhibitors, indicating that mechanisms other than ferroptosis were responsible for the synergistic lethality. In addition, cotreatment was shown to induce increased γH2A.X foci and to impair nonhomologous end joining (NHEJ) activity to a greater extent than did any single drug. Mass spectrometry and immunoprecipitation analyses revealed that FSP1 interacted with Ku70, a classical component recruited to and occupying the end of double-strand breaks (DSBs) in the NHEJ process. FSP1 inhibition decreased Ku70 PARylation, impaired subsequent DNA-PKcs recruitment to the Ku complex at DSB sites and was rescued by restoring PARylation. These findings unprecedentedly reveal a novel role of FSP1 in DNA damage repair and provide new insights into how to sensitize OC patients to PARPi treatment.


Asunto(s)
Ferroptosis , Neoplasias Ováricas , Ftalazinas , Piperazinas , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Femenino , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Animales , Ratones , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proliferación Celular/efectos de los fármacos , Proteína de Unión al Calcio S100A4/metabolismo , Proteína de Unión al Calcio S100A4/genética
10.
Free Radic Res ; 58(2): 130-143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38394084

RESUMEN

Pathogenic variants of BRCA1/2 constitute hereditary breast and ovarian cancer (HBOC) syndrome, and BRCA1/2 mutant is a risk for various cancers. Whereas the clinical guideline for HBOC patients has been organized for the therapy and prevention of cancer, there is no recommendation on the female reproductive discipline. Indeed, the role of BRCA1/2 pathogenic variants in ovarian reserve has not been established due to the deficiency of appropriate animal models. Here, we used a rat model of Brca2(p.T1942fs/+) mutant of Sprague-Dawley strain with CRISPR-Cas9 editing to evaluate ovarian reserve in females. Fertility and ovarian follicles were evaluated and anti-Müllerian hormone (AMH) was measured at 8-32 weeks of age with a comparison between the wild-type and the mutant rats (MUT). MUT revealed a significantly smaller number of deliveries with fewer total pups. Furthermore, MUT showed a significant decrease in primordial follicles at 20 weeks and a low AMH level at 28 weeks. RNA-sequencing of the ovary at 10 weeks detected acceleration of the DNA damage repair pathway, which was accompanied by oxidative stress-induced DNA double-strand breaks, a decrease in PTEN, and an increase in mTOR in follicular granulosa cells. In conclusion, Brca2(p.T1942fs/+) dissipates primordial follicles via early activation of granulosa cells through oxidative stress, leading to earlier termination of fertility.


Asunto(s)
Reserva Ovárica , Humanos , Ratas , Femenino , Animales , Reserva Ovárica/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ratas Sprague-Dawley , Células de la Granulosa/metabolismo , Hormona Antimülleriana/genética , Hormona Antimülleriana/metabolismo , Estrés Oxidativo
11.
Nat Commun ; 15(1): 1568, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383600

RESUMEN

Drugs targeting the DNA damage response (DDR) are widely used in cancer therapy, but resistance to these drugs remains a major clinical challenge. Here, we show that SYCP2, a meiotic protein in the synaptonemal complex, is aberrantly and commonly expressed in breast and ovarian cancers and associated with broad resistance to DDR drugs. Mechanistically, SYCP2 enhances the repair of DNA double-strand breaks (DSBs) through transcription-coupled homologous recombination (TC-HR). SYCP2 promotes R-loop formation at DSBs and facilitates RAD51 recruitment independently of BRCA1. SYCP2 loss impairs RAD51 localization, reduces TC-HR, and renders tumors sensitive to PARP and topoisomerase I (TOP1) inhibitors. Furthermore, our studies of two clinical cohorts find that SYCP2 overexpression correlates with breast cancer resistance to antibody-conjugated TOP1 inhibitor and ovarian cancer resistance to platinum treatment. Collectively, our data suggest that SYCP2 confers cancer cell resistance to DNA-damaging agents by stimulating R-loop-mediated DSB repair, offering opportunities to improve DDR therapy.


Asunto(s)
Reparación del ADN , Estructuras R-Loop , Roturas del ADN de Doble Cadena , Recombinación Homóloga , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación
12.
Redox Biol ; 70: 103070, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359745

RESUMEN

Although widely known as a tumor suppressor, the breast cancer 1 susceptibility protein (BRCA1) is also important in development, where it regulates fetal DNA repair pathways that protect against DNA damage caused by physiological and drug-enhanced levels of reactive oxygen species (ROS). We previously showed that conditional heterozygous (+/-) knockout (cKO) mouse embryos with a minor 28% BRCA1 deficiency developed normally in culture, but when exposed to the ROS-initiating drug, alcohol (ethanol, EtOH), exhibited embryopathies not evident in wild-type (+/+) littermates. Herein, we characterized a directBrca1 +/- knockout (KO) model with a 2-fold greater (58%) reduction in BRCA1 protein vs. the cKO model. We also characterized and compared learning & memory deficits in both the cKO and KO models. Even saline-exposed Brca1 +/- vs. +/+ KO progeny exhibited enhanced oxidative DNA damage and embryopathies in embryo culture and learning & memory deficits in females in vivo, which were not observed in the cKO model, revealing the potential pathogenicity of physiological ROS levels. The embryopathic EtOH concentration for cultured direct KO embryos was half that for cKO embryos, and EtOH affected Brca1 +/+ embryos only in the direct KO model. The spectrum and severity of EtOH embryopathies in culture were greater in both Brca1 +/- vs. +/+ embryos, and direct KO vs. cKO +/- embryos. Motor coordination deficits were evident in both male and female Brca1 +/- KO progeny exposed in utero to EtOH. The results in our direct KO model with a greater BRCA1 deficiency vs. cKO mice provide the first evidence for BRCA1 protein dose-dependent susceptibility to developmental disorders caused by physiological and drug-enhanced oxidative stress.


Asunto(s)
Enfermedades Fetales , Trastornos del Neurodesarrollo , Humanos , Masculino , Femenino , Ratones , Animales , Etanol/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Ratones Noqueados , Estrés Oxidativo , Daño del ADN , Enfermedades Fetales/metabolismo , Enfermedades Fetales/patología , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo
13.
Int J Biochem Cell Biol ; 168: 106527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242199

RESUMEN

High structural flexibility has been reported in the central region of BRCA1, which hinders the structural and functional evaluations of mutations identified in the domain. Additionally, the need to categorize variants of unknown significance (VUS) has increased due to the growth in the number of variants reported in clinical settings. Therefore, unraveling the disease-causing mechanism of VUS identified in different functional domains of BRCA1 is still challenging. The current study uses a multidisciplinary approach to assess the structural impact of BRCA1 Arg866Cys mutation discovered in the central domain of BRCA1. The structural alterations have been characterized using Circular-Dichroism spectroscopy, nano-DSF, and molecular-dynamics simulations. BRCA1 Arg866Cys mutant demonstrated more flexibility and lesser affinity to DNA than the wild-type protein. The BRCA1(759-1064) wild-type protein was shown to be a ßII-rich protein with an induced D-O transition in the presence of DNA and 2,2,2-Trifluoroethanol (TFE). The protein's alpha-helical composition did not significantly change in the presence of TFE, besides an increase in ß-turns and loops. Under Transmission Electron Microscopes (TEM), amyloid-like fibrils structure was detected for Arg866Cys mutant whereas the wild-type protein showed amorphous aggregates. An increased ThT fluorescence indicated ß-rich composition and aggregation-prone behaviour for BRCA1 wild-type protein, while the fluorescence intensity was significantly quenched in the Arg866Cys mutant. Furthermore, increased conformational flexibility in the Arg866Cys variant was observed by principal component analysis. This work aims to comprehend the inherently disordered region of BRCA1 as well as the impact of missense mutations on folding patterns and binding to DNA for functional aspects.


Asunto(s)
Proteína BRCA1 , Mutación Missense , Proteína BRCA1/genética , Proteína BRCA1/química , Proteína BRCA1/metabolismo , ADN , Simulación de Dinámica Molecular , Mutación , Humanos , Femenino
14.
Pathology ; 56(2): 214-227, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212229

RESUMEN

The evaluation of biomarkers by molecular techniques and immunohistochemistry has become increasingly relevant to the treatment of female genital tract tumours as a consequence of the greater availability of therapeutic options and updated disease classifications. For ovarian cancer, mutation testing for BRCA1/2 is the standard predictive biomarker for poly(ADP-ribose) polymerase inhibitor therapy, while homologous recombination deficiency testing may allow the identification of eligible patients among cases without demonstrable BRCA1/2 mutations. Clinical recommendations are available which specify how these predictive biomarkers should be applied. Mismatch repair (MMR) protein and folate receptor alpha immunohistochemistry may also be used to guide treatment in ovarian cancer. In endometrial cancer, MMR immunohistochemistry is the preferred test for predicting benefit from immune checkpoint inhibitor (ICI) therapy, but molecular testing for microsatellite instability may have a supplementary role. HER2 testing by immunohistochemistry and in situ hybridisation is applicable to endometrial serous carcinomas to assess trastuzumab eligibility. Immunohistochemistry for oestrogen receptor and progesterone receptor expression may be used for prognostication in endometrial cancer, but its predictive value for hormonal therapy is not yet proven. POLE mutation testing and p53 immunohistochemistry (as a surrogate for TP53 mutation status) serve as prognostic markers for favourable and adverse outcomes, respectively, in endometrial cancer, especially when combined with MMR testing for molecular subtype designation. For cervical cancer, programmed death ligand 1 immunohistochemistry may be used to predict benefit from ICI therapy although its predictive value is under debate. In vulvar cancer, p16 and p53 immunohistochemistry has established prognostic value, stratifying patients into three groups based on the human papillomavirus and TP53 mutation status of the tumour. Awareness of the variety and pitfalls of expression patterns for p16 and p53 in vulvar carcinomas is crucial for accurate designation. It is hoped that collaborative efforts in standardising and optimising biomarker testing for gynaecological tumours will contribute to evidence-based therapeutic decisions.


Asunto(s)
Carcinoma , Neoplasias Endometriales , Neoplasias Ováricas , Humanos , Femenino , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pronóstico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Relevancia Clínica , Proteína BRCA2/genética , Neoplasias Endometriales/patología , Neoplasias Ováricas/patología , Mutación , Genitales Femeninos/metabolismo , Genitales Femeninos/patología , Carcinoma/patología , Biomarcadores , Biomarcadores de Tumor/genética , Reparación de la Incompatibilidad de ADN
15.
Cancer Lett ; 584: 216608, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199587

RESUMEN

Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias Pulmonares , Femenino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , ADN , Genes p53 , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266640

RESUMEN

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
17.
J Mol Biol ; 436(1): 168372, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979908

RESUMEN

Brca1 mouse models were first reported in the mid-1990's shortly after cloning the human gene. Since then, many mouse models with a range of mutations have been generated, some mimic patient mutations, others are designed to probe specific protein domains and functions. In this review, we discuss early and recent studies using engineered Brca1 mouse alleles, and their implications for understanding Brca1 protein function in the context of DNA repair, tumorigenesis, and anti-cancer therapeutics.


Asunto(s)
Proteína BRCA1 , Neoplasias Experimentales , Animales , Humanos , Ratones , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparación del ADN , Mutación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética
18.
Breast Cancer Res Treat ; 203(1): 49-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37728693

RESUMEN

PURPOSE: Breast cancer often metastasizes to the central nervous system. Although the prognosis of brain metastases from breast cancer has been considered poor, and systemic therapy has not contributed to an improved prognosis, newer agents are expected to be more effective. BRCAness is defined as the status of homologous recombination deficiency (HRD) in tumor tissue, regardless of the presence of pathogenic germline BRCA1/2 variants. A study employing next-generation sequencing analysis showed that HRD was found relatively frequently in brain metastases of breast cancer patients. However, there have been no studies evaluating BRCAness in brain metastases of breast cancer with more efficient, rapid, and cost-effective methods. METHODS: We retrospectively investigated 17 brain metastases of breast cancer that were surgically resected at our hospital from January 2007 to December 2022. Of these, samples from 15 patients were evaluable for BRCAness by employing multiplex ligation-dependent probe amplification (MLPA) assay. RESULTS: Of the 15 patients, five patients (33%) had tumors with BRCAness. Clinicopathological factors of patients with brain metastases with BRCAness were not statistically different from those of patients who possessed tumors without BRCAness. Patients with brain metastases with BRCAness had shorter overall survival compared to those without BRCAness (BRCAness, median 15 months (95% CI 2-30) vs. non-BRCAness, median 28.5 months (95% CI 10-60); P = 0.013). CONCLUSION: In this study, we evaluated BRCAness in brain metastases of breast cancer with the MLPA method, and found that about one-third of patients had BRCAness-positive tumors. The analysis of BRCAness using MLPA has the potential for practical clinical use.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Estudios Retrospectivos , Proteína BRCA2/genética , Mutación , Neoplasias Encefálicas/genética , Encéfalo/metabolismo
19.
Protein Sci ; 33(1): e4849, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037490

RESUMEN

The breast cancer susceptibility 1 (BRCA1) protein plays a pivotal role in modulating the transcriptional activity of the vital intrinsically disordered transcription factor MYC. In this regard, mutations of BRCA1 and interruption of its regulatory activity are related to hereditary breast and ovarian cancer (HBOC). Interestingly, so far, MYC's main dimerization partner MAX (MYC-associated factor X) has not been found to bind BRCA1 despite a high sequence similarity between both oncoproteins. Herein, we show that a potential reason for this discrepancy is the heterogeneous conformational space of MAX, which encloses a well-documented folded coiled-coil homodimer as well as a less common intrinsically disordered monomer state-contrary to MYC, which exists mostly as intrinsically disordered protein in the absence of any binding partner. We show that when the intrinsically disordered state of MAX is artificially overpopulated, the binding of MAX to BRCA1 can readily be observed. We characterize this interaction by nuclear magnetic resonance (NMR) spectroscopy chemical shift and relaxation measurements, complemented with ITC and SAXS data. Our results suggest that BRCA1 directly binds the MAX monomer to form a disordered complex. Though probed herein under biomimetic in-vitro conditions, this finding can potentially stimulate new perspectives on the regulatory network around BRCA1 and its involvement in MYC:MAX regulation.


Asunto(s)
Proteína BRCA1 , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Calorimetría/métodos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Proto-Oncogénicas c-myc/metabolismo
20.
Nucleic Acids Res ; 51(22): 12224-12241, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37953292

RESUMEN

BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.


Asunto(s)
Neoplasias , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Replicación del ADN , Inestabilidad Genómica , Magnesio , MicroARNs/genética , Neoplasias/genética , Estructuras R-Loop
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA